

SAE Aero

James Seganti (Project Manager) Caleb Hatcher (Budget Liaison) Braden Weiler (Documentation Manager) Angel Montiel (Website Developer) Damian Lumm (Client Contact)

Project Description

- The purpose of this team is to design and manufacture an RC aircraft to compete in the SAE West Region competition.
- Fixed wing regular class
- All electric aircraft and has to carry payload
- Stakeholders: John Tester, Sarah Oman, Northern Arizona University, Flagstaff Flyers, ASNAU
- Represent NAU in a positive manner

Figure 1: SAE Aero West Competitor

NAU SAE Aero West Regular History

5 appearances at competition in the last 10 years

Most recent in 2015, placed 13th out of 41 teams

→ 2019 goal: place top 10 ←

College of Engineering, Informatics, and Applied Sciences

Wings Benchmarking

- Airfoil, aspect ratio, angle of incidence, wing platform, dihedral, wing loading, angle of attack, coefficient of drag, coefficient of lift
 - NAU's aero team from '16 used a S1223 airfoil because it gave the best lift to drag ratio[7]
 - The team from '12 used the airfoil Eppler 423 because of the high lift coefficient[8]
- Solidworks used for stress analysis
- Laser cutters to make precise airfoils
- Tapered wings are more aerodynamically efficient
- UM placed 1st with a twin tail and very large wingspan

Figure 2: NAU 2016 SAE Aero capstone design [7]

Wings Design Research

- Ribbed Design
 - Minimize weight, ease of manufacturing, material constraints, used by top placing teams
- Past teams were successful in using MATLAB to assist in airfoil selection
- Flaps on the trailing edge of a wing can be used to increase lift
- Wingspan must comply with traveling conditions

Figure 3: CAD from NAU 2016 SAE Aero capstone showing ribbed design [7]

Fuselage Benchmarking and Research

- Dimensions: Body Length
 - Typically 70-80% length of wings [6]
- Styles
 - More aerodynamic: Rounded, no hard edges on body (top)
 - Less aerodynamic: Rectangular, Geometric, hard edges (bottom)
 - Last 3 AERO teams chose this
- Materials:
 - Prior AERO team favorites
 - Balsa wood (very lightweight & fragile)
 - Plastic (lightweight & semi-durable)
 - Aluminum (heavy & durable)

Figure 8: Goldwing Edge [1]

Figure 9: Homemade model [2]

Tail Benchmarking and Research

- Dimensions: Horizontal Wing
 - Typically 25% of the total wingspan [6]
 - The larger the tail, the further the CG is shifted back
 - Elevators & rutter design affects tail design heavily
- Styles:
 - SAE AERO favorites
 - Widely used for commercial and military purpose

Figure 10: Airplane Tail Design Chart [9]

Propeller Benchmarking and Research

- Propellers measured using two dimensions:
 - Diameter
 - Ranges from 4.5 in. to 16 in.
 - Pitch
 - Ranges from 3 in. to 12 in.
- Two Blades
 - More blades, less efficiency
- Engine size to propeller size
- Thrust-to-Weight Ratio
- '15-'16 Aero Team Propeller: 18" x 12"
- '11-'12 Aero Team Propeller: 14" x 4"

Figure 4: Top Flights power point range of props [3]

Servos Benchmarking and Research

- Servos for:
 - Rudder
 - Elevator
 - Nose Gear
 - Aileron
- Past Teams:
 - Extra High Torque Servo (SPMS601H)
 - Speed: 0.15 (sec/60 degrees) @ 7.4V
 - Torque: 162 (oz-in) @ 7.4V
 - **TS-150**
 - **TS-140**
 - TS1-126
 - Speed Range: 0.21 (sec/60 degrees) @ 6V 0.15 (sec/60 degrees) @ 6V
 - Torque Range: 65 (oz-in) 162 (oz-in)

Figure 7: Example of servo from 2016 Aero Team [5]

Motor Benchmarking and Research

- Electric motor
- Brushless motor, higher speeds
- Electronic speed controller needed
- Past Teams:
 - Brushless motor
 - The team from 2016 used an AXI 5325/16 Gold Line motor

Figure 6: Example of the motor from 2016 [7]

Landing Gear Benchmarking and Research

- Tricycle landing gear commonly used in SAE Aero
- Three common types of landing gear

- Front wheel controls plane on the ground
- Main gear and nose gear
- Simpler center of gravity
- Materials:
 - Carbon Fiber
 - Aluminum

Figure 11: Common landing gear chart

Customer Requirements

- Fixed Wing Aircraft
- Must be able to take-off, fly, and land
- Must be safe
- Must be an electric motor
- Must be a cargo plane
- Must carry a payload of at least 6.5 pounds
- Original design
- Must be repeatable
- Must be durable/ repairable

Engineering Requirements

- 12' Max Wingspan
- 2.4 GHz radio control system
- 1000 W Power Limiter
- Battery standardized (6 cell 22.2V Lithium Polymer battery pack)
- Max weight of 55 pounds
- Red arming plug present on aircraft as a safety shutoff
- Takeoff distance: 200 ft
- Landing distance: 400ft
- Straight flight distance: 400 ft
- Must fly empty and with payload

Engineering Constraints

- No use of fiber reinforced polymers [FRP] for body/wings
- No metal propellers
- Use of lead is strictly prohibited
- Aircraft must be powered by engine/motor onboard. No internal/external forms of stored potential energy
- The payload cannot contribute to structural integrity of airframe
- No multiple motors

Customer Requirement	Weight	Engineering Requirement	Wingspan	Power Limit	Weight	Takeoff Distance	Landing Distance	Stored Energy	Fuselage Capacity	Payload	U.	Cost	Thrust
1. Low Cost	0.12	, j	9		9		10 m	3	1	2 11		9	
2. Durable	0.1		3		3		0			1			
3. Safe	0.05	- Î		9			1			1			
4. Repeatablility	0.05	Ĩ	1		1		64 - AS				9		9
5. Take Off	0.16	- 23	9	1	9	9	<u>17 - 1</u>	3		8 <u>8</u>	9		9
6. Landing	0.16		9		3	1	9				3		9
7. Repairability	0.05	1	1			1						9	
8. Scoring	0.16	- îî	14		1	1	1		9	9	9		9
9. Transportation	0.05	- 2	9	- 3	-	2	8 8			8 - 8			
10. Controllabilty	0.1	- 32	9	3	9	8		3	3	9	9		9
Absolute Technical Importance (ATI)		1.	5.71	0.75	4.41	1.6	1.6	1.14	1.86	2.34	4.71	1.53	5.67
Relative Technical Importance (RTI)		1	1	11	4	7	7	10	6	5	3	9	2
Target ER values			10	1000	45	100	100	6000	15	10	300	1000	200
Tolerances of Ers	1 - E		±2	±50	±10	±50	±50	±500	±5	±4.5	±50	±300	±50
Testing Procedure (TP#)	1 5	- 91	ft	W	lbs	ft	ft	mAh	#balls	lbs	N	\$	N

Approval (print name, sign, and date):

Toom	mom	hor	4	
ream	mem	Der		

Team member 2:

Team member 3:

Team member 4:	28
Team member 5:	20 48

2011		1.0				0.00	٤.,
	\sim	nt.	- 24	nn	$r \sim$	va	۰.
-11				$\omega \omega$	IU	v cai	١.

Page 1

Schedule

Design Process Delegation

- James Flaps and Wing Design
- Damian Propellor and Powertrain
- Braden Landing Gear and Powertrain
- Angel Fuselage Design
- Caleb Airfoil and Wing Design

ask Name	Duration	Start
feam Charter	5 days	Tue 9/4/18
Create Team Charter	5 days	Tue 9/4/18
Team Charter Due	0 days	Tue 9/11/18
Presentation One: Background	10 days	Tue 9/4/18
Backgroud Research and Benchmarking	10 days	Tue 9/4/18
Identify Engineering and Customer Requirements	5 days	Tue 9/11/18
Evaluate Budget	4 days	Wed 9/12/18
Presentation 1	0 days	Tue 9/18/18
Create Website	5 days	Tue 9/18/18
Website check 1	0 days	Tue 9/25/18
Register for SAE Aero West	0 days	Mon 10/1/18
Analysis Team memo due	0 days	Tue 10/9/18
nitial Design Process	34 days	Tue 9/18/18
Airfoil Selection	15 days	Tue 9/18/18
Battery, Motor, and Propellor Selection	10 days	Tue 9/18/18
Analytical Reports Due	0 days	Tue 10/23/18
Wing Design	16 days	Mon 10/8/18
Fuselage Design	20 days	Tue 10/2/18
Landing Gear Design	16 days	Mon 10/1/18
Electronics/Steering System Design	16 days	Mon 10/8/18
Tail design	16 days	Mon 10/8/18
Final Design Selected	0 days	Sun 11/4/18
Preliminary Report Due	0 days	Tue 10/16/18
Website check 2	0 days	Tue 10/30/18
inal Report	16 days	Sun 10/28/18
Compile Final Report	12 days	Sun 10/28/18
Final Report Due	0 days	Tue 11/13/18
Create BOM	12 days	Sun 11/4/18
Finalize CAD	12 days	Sun 11/4/18
Submit BOM and CAD	0 days	Tue 11/20/18
Website check 3	0 days	Mon 12/10/18
Order Materials	10 days	Tue 11/20/18
Manufacture and Assemble	63 days	Tue 12/4/18
Manufacture Parts	50 days	Tue 12/4/18
Assemble RC Airplane	63 days	Tue 12/4/18
First Flight	0 days	Fri 3/1/19
5AE Design Report	9 days	Mon 2/18/19
Finalize Technical Design Report	9 days	Mon 2/18/19
Finalize 2D Drawings	9 days	Mon 2/18/19
Finalize Tech Data Sheet	9 days	Mon 2/18/19
Submit Design Report to SAE	0 days	Fri 3/1/19
inalize and Prepare RC Airplane for competition	24 days	Fri 3/1/19
Create Tech Presentation	16 days	Fri 3/1/19
SAE Aero West Competition	3 days	Thu 4/4/19
Fech Presentation	0 days	Fri 4/5/19
Prepare for UGRADS Presentation	14 days	Mon 4/8/19
JGRADS Presentation	0 days	Fri 4/26/19

Budget

	Item	Cost	Source of funding
	SAE membership	\$ 125.00	
	Registration	\$ 1,050.00	Engineering Department
rafaranca book	Fundamentals of		
rejerence book	Aerodynamics (Anderson)	\$ 111.00	
Insuring Safe	AMA Membership	\$ 75.00	
Elights	Flagstaff Flyers		
riigiits	Membership	\$ 200.00	
	RC practice plane	\$ 220.00	
	material/manufacturing		
	cost estimaes	\$ 1,100.00	
travel estimates	hotel	\$ 375.00	NALLSAE club / ASNALL
traverestimates	gas	\$ 400.00	NAU SAE CIUD / ASNAU
	total	\$ 3,656.00	
	estimated total currently without funding source	\$ 1,831.00	

Work Cited

[1] G. Hobby, "General Hobby," Goldwing ARF, 2018. [Online]. Available: https://www.generalhobby.com/goldwing-arfbrand-edge-3035cc-carbon-fiber-aerobatic-plane-p-1570.html?products_id=1570. [Accessed 17 September 2018].

[2] D. Harkless, "Flite Test," 29 January 2016. [Online]. Available: https://www.flitetest.com/articles/designing-smooth-symmetrical-airfoil-wings. [Accessed 17 September 2018].

[3] Carpenter., P. (2018). *RC Airplane Propeller Size Guide*. [online] Rc-airplane-world.com. Available at: https://www.rc-airplane-world.com/propeller-size.html [Accessed 17 Sep. 2018].

[4] Motion RC. (2018). 2 Blade Propellers menu-accessories. [online] Available at: https://www.motionrc.com/collections/2-blade-propellers [Accessed 17 Sep. 2018].

[5] (SPMS601H), E. (2018). Extra High Torque Servo | HorizonHobby. [online] Horizonhobby.com. Available at: https://www.horizonhobby.com/extra-high-torque-hybrid-servo-spms601h [Accessed 17 Sep. 2018].

Previous AERO teams:

[6] Veteto, L. (2018). Documents - SAE Aero Design. [online] Cefns.nau.edu. Available at: https://www.cefns.nau.edu/capstone/projects/ME/2018/SAEAero/news.html [Accessed 17 Sep. 2018].

[7] Goettl, S. (2018). [online] Cefns.nau.edu. Available at: https://www.cefns.nau.edu/capstone/projects/ME/2016/SAEAeroDesign/documents.html [Accessed 17 Sep. 2018].

[8] Beatty, C. (2018). The LumberCroc | SAE at NAU. [online] Cefns.nau.edu. Available at: https://www.cefns.nau.edu/capstone/projects/ME/2012/AERO/reports.html [Accessed 17 Sep. 2018].

[9] W. W. How, "What When How," 2018. [Online]. Available: http://what-when-how.com/flight/tail-designs/. [Accessed 17 September 2018].